Author Affiliations
Abstract
1 Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2 School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
3 Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
4 Physics Department and EHU Quantum Center, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain
5 Donostia International Physics Center (DIPC), 20018 Donostia, Spain
6 Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain
7 Extreme Conditions Physics Research Team, College of Physics and Electronic Information, Inner Mongolia Minzu University, Tongliao 028043, China
Since the discovery of hydride superconductors, a significant challenge has been to reduce the pressure required for their stabilization. In this context, we propose that alloying could be an effective strategy to achieve this. We focus on a series of alloyed hydrides with the AMH6 composition, which can be made via alloying A15 AH3 (A = Al or Ga) with M (M = a group ⅢB or IVB metal), and study their behavior under pressure. Seven of them are predicted to maintain the A15-type structure, similar to AH3 under pressure, providing a platform for studying the effects of alloying on the stability and superconductivity of AH3. Among these, the A15-type phases of AlZrH6 and AlHfH6 are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa, respectively. Furthermore, they remain dynamically stable at even lower pressures, as low as 13 GPa for AlZrH6 and 6 GPa for AlHfH6. These pressures are significantly lower than that required for stabilizing A15 AlH3. Additionally, the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3. This enhancement leads to higher critical temperatures (Tc) of 75 and 76 K for AlZrH6 and AlHfH6 at 20 and 10 GPa, respectively. In the case of GaMH6 alloys, where M represents Sc, Ti, Zr, or Hf, these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH3 from 160 GPa to 116, 95, 80, and 85 GPa, respectively. Particularly noteworthy are the A15-type GaMH6 alloys, which remain dynamically stable at low pressures of 97, 28, 5, and 6 GPa, simultaneously exhibiting high Tc of 88, 39, 70, and 49 K at 100, 35, 10, and 10 GPa, respectively. Overall, these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures.
Matter and Radiation at Extremes
2024, 9(1): 018401
Author Affiliations
Abstract
1 State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
2 Departamento de Física and EHU-Quantum Center, Universidad del País Vasco-Euskal Herriko Unibertsitatea, UPV/EHU, 48080 Bilbao, Spain
3 Donostia International Physics Center (DIPC), 20018 Donostia, Spain
4 Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain
Superionic and electride behaviors in materials, which induce a variety of exotic physical properties of ions and electrons, are of great importance both in fundamental research and for practical applications. However, their coexistence in hot alkali-metal borides has not been observed. In this work, we apply first-principles structure search calculations to identify eight Na–B compounds with host–guest structures, which exhibit a wide range of building blocks and interesting properties linked to the Na/B composition. Among the known borides, Na-rich Na9B stands out as the composition with the highest alkali-metal content, featuring vertex- and face-sharing BNa16 polyhedra. Notably, it exhibits electride characteristics and transforms into a superionic electride at 200 GPa and 2000 K, displaying unusual Na atomic diffusion behavior attributed to the modulation of the interstitial anion electrons. It demonstrates semiconductor behavior in the solid state, and metallic properties associated with Na 3p/3s states in the superionic and liquid regions. On the other hand, B-rich NaB7, consisting of a unique covalent B framework, is predicted to exhibit low-frequency phonon-mediated superconductivity with a Tc of 16.8 K at 55 GPa. Our work advances the understanding of the structures and properties of alkali-metal borides.
Matter and Radiation at Extremes
2023, 8(6): 068401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!